Attribute Selection Based on FRiS-Compactness

نویسندگان

  • Nikolay G. Zagoruiko
  • Irina Borisova
  • Vladimir Dyubanov
  • Olga Kutnenko
چکیده

Commonly to classify new object in Data Mining one should estimate its similarity with given classes. Function of Rival Similarity (FRiS) is assigned to calculate quantitative measure of similarity considering a competitive situation. FRiS-function allows constructing new effective algorithms for various Data Mining tasks solving. In particular, it enables to obtain quantitative estimation of compactness of patterns which can be used as indirect criterion for informative attributes selection. FRiS-compactness predicts reliability of recognition of control sample more precisely, than such widespread methods as One-LeaveOut and Cross-Validation. Presented in the paper results of real genetic task solving confirm efficiency of FRiS-function using in attributes selection and decision rules construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATTRIBUTE SELECTION THROUGH DESCISION RULES CONSTRACTION ( algorithm FRiS - GRAD )

This paper presents a new algorithm FRiS-GRAD of simultaneous informative attributes selection and decision rule construction. This algorithm is based on Function of Rival Similarity (FRiS-function) measuring similarity of objects with standards of rival patterns. Standards or representatives are the objects of training dataset which are the most similar to all other objects of their patterns. ...

متن کامل

Measure of Similarity and Compactness in Competitive Space

The given work is devoted to measures of similarity which are used at discovering of empirical regularities (knowledge). The function of competitive (rival) similarity (FRiS) is proposed as a similarity measure for classification and pattern recognition applications. This function allows one to design effective algorithms for solving all basic data mining tasks, obtain quantitative estimates of...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Multiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach

For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...

متن کامل

Extended MULTIMOORA method based on Shannon entropy weight for materials selection

Selection of appropriate material is a crucial step in engineering design and manufacturing process. Without a systematic technique, many useful engineering materials may be ignored for selection. The category of multiple attribute decision-making (MADM) methods is an effective set of structured techniques. Having uncomplicated assumptions and mathematics, the MULTIMOORA method as an MADM appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010